

MASARYK UNIVERSITY

FACULTY OF INFORMATICS

Reputation Systems in Wireless

Sensor Networks

BACHELOR THESIS

Petr Soběslavský

BRNO 2009

ii

Declaration

Hereby I declare that this paper is my original authorial work, which I have worked out by my

own. All sources, references and literature used or excerpted during elaboration of this work

are properly cited and listed in complete reference to the due source.

Advisor: RNDr. Petr Švenda

iii

Acknowledgement

I express my gratitude to Petr Švenda for introducing me into the problematic of reputation

systems and for our fruitful discussions.

iv

Abstract

In this thesis we provide an overview of current research on reputation systems in wireless

sensor networks. Several proposals are reviewed and compared. In the second part of our

research, we developed a universal multipurpose framework for wireless sensor network

simulations and implemented selected proposals. We defined a set of tests and evaluated

reputation systems with respect to overall network performance, energy consumption and

resistance against presence of selfish and malicious nodes. Based on our observations we

propose a new reputation system for protecting data integrity in wireless sensor networks.

We provide complete simulation results and recommendations for further research.

v

Keywords

Wireless sensor network, reputation system, routing, security, integrity, simulation.

vi

Contents

1 Introduction ... 1

1.1 Wireless Sensor Networks ... 2

1.2 Dynamic Source Routing Protocol .. 3

1.3 Security in Wireless Sensor Networks ... 4

1.4 Reputation System .. 5

2 Selected Reputation Systems .. 7

2.1 Systems Overview .. 8

2.1.1 Watchdog and Pathrater ... 8

2.1.2 Context-Aware Detection .. 9

2.1.3 CORE ... 9

2.1.4 SORI .. 10

2.1.5 OCEAN .. 10

2.2 Comparison .. 11

3 SensNet Simulation Framework ..14

3.1 Base Platform ...14

3.1.1 OMNeT++ ..14

3.1.2 Mobility Framework ..14

3.1.3 SensNet Framework ... 15

3.2 Network ..16

3.3 Node .. 17

3.3.1 Mobility .. 17

3.3.2 Blackboard .. 18

3.3.3 Traffic Generator ... 18

3.3.4 Application Layer .. 18

3.3.5 Network Layer ... 18

3.3.6 ARP ... 18

3.3.7 Routing .. 18

3.3.8 NIC ...19

vii

3.3.9 Behavior Control ..19

3.3.10 Reputation System ...19

3.3.11 Battery ... 20

4 Simulation of Reputation Systems ..21

4.1 Test Scenarios ...21

4.2 Results ... 24

4.2.1 Number of Selfish Nodes .. 24

4.2.2 Dropping Probability .. 24

4.2.3 Number of Connections and Speed of Movement .. 25

4.2.4 Limited Energy Resources .. 26

4.2.5 Malicious Nodes .. 26

5 Protection against Malicious Nodes ... 28

5.1 New Reputation System Design .. 28

5.2 Protocol Specification .. 29

5.3 Simulation Results ... 30

6 Conclusion ... 31

Bibliography ... 32

Appendix A – Simulation Results .. 34

Average Results of All Test Runs in Unprotected Network.. 35

Average Results of All Test Runs with Watchdog and Pathrater ... 36

Average Results of All Test Runs with Context Aware Detection .. 37

Average Results of All Test Runs with CORE ... 38

Average Results of All Test Runs with SORI .. 39

Average Results of All Test Runs with OCEAN .. 40

Appendix B – Contents of the Attached CD ..41

1

1 Introduction

Wireless sensor networks have recently received a great deal of attention from scientific

community. Small and cheap devices with low energy consumption and limited

computational power can be deployed in large numbers to process great variety of tasks. As

the cooperation between nodes is crucial for successful operation of the network, ensuring

mutual trust between nodes becomes an important part of securing these networks against

both external and internal attackers.

There have been several approaches proposed recently. It could be possible to ensure mutual

trust by using some of key exchange algorithms, summarized in (1). However even with a

sophisticated key exchange it is still possible that a node change its behavior during network

operation. Therefore there should be a possibility for the network to dynamically react to

presence of misbehaving nodes. One of approaches to handle this problem is using reputation

system.

Reputation system is a system which enables network to dynamically evaluate reputation

value of a node. Reputation value of a node is a level of trust other nodes have in the node.

This value is computed using various inputs – past experiences with a node, observation of

communication or opinion of other nodes.

In recent years several papers on reputation systems have been published. Each of them

provides some proof of feasibility and efficiency. However we were not able to find any

complex comparison of these proposals in similar conditions. The aim of our research was to

create a multipurpose framework for reputation system simulation, implement selected

reputation systems and compare their capabilities using a set of tests.

The thesis is organized as follows: First chapter introduces wireless sensor networks, security

challenges and principles of reputation systems. Second chapter gives an overview of systems

selected for our comparison. Third chapter describes multipurpose WSN simulation

framework SensNet, which was developed as part of this research. Fourth chapter explains

our simulation of reputation systems and analyzes results. In the fifth chapter we show how a

reputation system can be used to protect network against malicious nodes. Sixth chapter

concludes the paper. All simulation results are attached in Appendix A. Appendix B describes

contents of the attached CD.

2

1.1 Wireless Sensor Networks

Wireless sensor network is a network consisting of spatially distributed autonomous devices

using sensors to cooperatively monitor physical or environmental conditions. The

deployment is either random or utilizes predefined locations. Typically a number of sensor

nodes are scattered in the area, collect data and route them through a multi-hop structure to

a specialized node referred to as a sink or base station. The base station then communicates

the raw or processed data to the user via a traditional infrastructure network. This is

illustrated in Figure 1.

Every node in a sensor network is typically equipped with a radio transceiver, a small

microcontroller and a battery. All memory, energy and computational resources of sensor

nodes are usually very limited, which has to be kept on mind while designing protocols and

applications.

Sensor nodes may change their location after initial deployment. Mobility can result from

environmental influences such as wind or water, sensor nodes may be attached to or carried

by mobile entities or sensor nodes may possess automotive capabilities.

Depending on the actual needs of the application, the form factor of a single sensor node may

vary from the size of a shoe box (e.g., a weather station) to a microscopically small particle

(e.g., for military applications where sensor nodes should be almost invisible). Similarly, the

cost of a single device may vary from hundreds of Euros (for networks of very few, but

powerful nodes) to a few cents (for large-scale networks made up of very simple nodes). (2)

Figure 1 Illustration of a wireless sensor network

3

 1 2 3

1.2 Dynamic Source Routing Protocol

Sensor network is usually a wireless ad-hoc network, which means that each node supports a

multi-hop routing algorithm. All proposals considered in this paper work on top of the

Dynamic Source Routing algorithm (3). This algorithm is well suited for reputation systems a

node sending packet has full control over the whole route and can easily avoid untrusted.

Dynamic Source Routing protocol is an on-demand protocol designed to restrict the

bandwidth consumed by control packets by eliminating periodic table-update messages

required in table-driven approach.

Operation of the protocol is depicted on Figure 2: Consider a source node S which wants to

send a packet to a node D. If it has no routing information stored in its cache, it starts route

discovery. It broadcasts Route Request to all nodes in its neighborhood. When a node

receives Route Request packet, it first checks its query number field and if this is the first

time it encounters this request, it adds its address at the end of the route field and forwards

the requests to its neighbors. This way the request is flooded throughout the network. When

the request arrives to the destination node D, it responds with Route Reply packet which is

sent back to the source reversing the request route.

The source node and all nodes on the way store received route information in their cache.

After some time a node has several routes to possible destinations and while sending own

packets it uses some metric to choose the best route. In the standard DSR implementation a

node always choose the shortest path (i.e. the path containing the lowest number of nodes).

As we will see, reputation systems may use different metrics to avoid routing via untrusted

nodes.

S

D

S

D

S

D

Figure 2 DSR Routing: 1. Sending Route Request, 2. Request propagation, 3. Sending Route Reply

4

1.3 Security in Wireless Sensor Networks

There are many security issues common with usual wireless ad-hoc networks. In order to

evaluate security of a network, we must define suitable threat model. The threat model

formulates the hypothesis regarding the attacker’s capabilities and its possible behavior.

A common assumption is the Dolev-Yao model (4). In this model, the attacker can gain

control over the communication channel and hear the messages between the parties,

intercept them, prevent their delivery and also forge its own messages into the system.

However, as sensor network may operate in an unattended environment, the possibility of

attacker gaining control over some of the communicating nodes and acquiring all the

information stored within it, has to be considered. As was already mentioned, this is also why

securing sensor network cannot rely only on secure key establishment, but also has to take

into account possibility of node compromising during network operation.

Attacks on wireless sensor network can be categorized as active or passive:

- Passive attacks – The eavesdropped can continuously monitor network communication

and use traffic analysis to discover communication patterns.

- Active attacks – The attacker can capture a sensor node, steal all information stored in

it and use its identity and reputation for further operation in the network.

Attackers can be classified into two categories depending on their abilities:

- Mote-class attacker – The attacker has access to few ordinary sensor nodes with lesser

capability and might only be able to jam the radio link in its immediate vicinity.

- Laptop class attacker – The attacker has access to more powerful devices with greater

battery power, more capable processor and a high-power transmitter with a sensitive

antenna.

It is generally assumed that the environments in which the sensors are deployed are risky and

untrusted. Each sensor trust itself, but sensors do not trust each other. Further it is assumed

that all compromised sensors are compromised by the same attacker and that there is no

upper bound on the number of compromised nodes. However, the attacker cannot

compromise the base station, which is typically resourceful and well protected. (5)

There is one other risk for network functionality, which is specific for wireless sensor

networks. As energy resources are very limited, nodes might have tendency to save as much

energy for their longer operation as possible. While such behavior is beneficial for a node

itself it might be a risk for overall network functionality. Such node, called selfish node can

5

refuse to forward packets for other nodes or give false replies to routing protocol requests in

order to avoid becoming part of packet routes.

Apart from selfish node, there might also be a malicious node. Such node can intentionally

deteriorate network functionality by flooding it with false information, generate excessive

traffic in order to consume energy of other nodes, impersonate another node or intentionally

change data stored in packets it is forwarding. It is also possible that several malicious nodes

coordinate their efforts using secret communication channel and carry on so-called collusion

attack.

All over this research we make a clear distinction between selfish nodes, which are trying to

save energy for them and malicious nodes, which are trying to directly attack network in

order to significantly decrease its functionality or to gain access to sensitive data. As the

terminology is not unified yet, it is possible that other papers use different words. Widely

used expression misbehaving node can refer to both selfish and malicious node.

1.4 Reputation System

Reputation system is a decentralized distributed system of reputation evaluation and

information exchange between nodes in wireless sensor network. Every node contains a

module which calculates reputation values of other nodes.

Possible inputs taken into consideration are:

- Own experience – Node’s own experience with a neighbor. For instance, how many

route requests were correctly answered by the neighbor, how many packets the neighbor

forwarded, how many packets were received from the neighbor

- Observations – Node can switch its transceiver into promiscuous mode and listen to

outgoing communication of its neighbor in communication range. This way it can check,

whether a neighbor reacts correctly to requests, for instance, whether it really forwards

packets it is requested to forward.

- Neighbor notifications – Reputation system can use information shared between

nodes. Node can exchange reputation information with its direct neighbors to get access

to observations it could not make by itself.

- Further information propagation – Reputation information can be propagated

further throughout the network via multi-hop routes.

- Information from nodes along the route – While trying to find a route to a

destination in DSR algorithm, a node creates route request, which is then propagated

through the network. When destination is found, the route information is returned via the

6

new route back to source route. Nodes along this route can observe behavior of involved

nodes and report the sender if these nodes are behaving correctly or not.

- Information from route requests – Route requests can be used for cheap and easy

propagation of reputation information. The observations and reputation values can be

included in a route request and all nodes receiving this request can incorporate them into

their own evaluation.

As we will see, different reputation systems use different subset of mentioned inputs and

different formulas for reputation evaluation.

Common assumption is that a good reputation system should cause selfish behavior

disadvantageous and motivate nodes to behave correctly. It should be possible to isolate

malicious node from the network, but in such a way that isolated nodes still fulfill their duties

against other nodes. Some sort of re-socialization and re-integration for nodes that change

their behavior should also be possible. (6)

7

2 Selected Reputation Systems

We have selected five several proposals for our comparison. All proposals work on top of

Dynamic Source Routing algorithm and work in similar way: Each node in the network

observes all or some of its neighbors, evaluate their reputation value and spread reputation

information to other nodes. The systems differ in the way this information is spread and in

the formula used to evaluate reputation value. The aim of a system for the node is to be able

to find the best possible route for sending own packets and eventually to prevent

misbehaving nodes from using the network.

Some of the proposals also consider further security measures, i.e. using encryption or hash

chains to protect reputation system messages. We agree that ensuring integrity and

confidentiality in the sensor network by means of cryptography is a critical issue, however we

believe that it should be dealt with separately in a wider context of the system and that the

reputation information should be protected in the same way as the data.

There is one frequently cited proposal called CONFIDANT ((6) and (7)), where the evaluation

of received alarm messages is based on trust levels established by PGP encryption system.

The problem of this approach is that even a node highly trusted in terms of PGP can be selfish

in terms of routing. As we think that PGP trust and routing trust are two different thinks and

we wanted to focus on the essential principles of reputation systems, we decided not to

consider CONFIDANT in our comparison.

In our research we wanted to find out which reputation system is the most effective, which

means to answer the following questions:

1. What reputation data should be shared between nodes to remain sufficiently

effective?

2. How should be the reputation value evaluated?

3. How to prevent nodes from misbehaving?

This section overviews selected proposals with respect to these questions and provides a

short theoretical comparison.

8

2.1 Systems Overview

2.1.1 Watchdog and Pathrater

First published in (8) Watchdog was the first proposal and inspiration for further solutions.

It introduces the watchdog mechanism and proposes route evaluation in DSR be based on

reputation values of other nodes.

As sensor nodes use wireless all-direction antennas, it is possible for a node to observe

behavior of its neighbors and check whether they follow the protocol correctly. When node A

is forwarding a data packet, it knows addresses of next two hops in the route – nodes B and

C. Because B is in communication range of A, message forwarded from B to C can also be

overheard by node A as shown in Figure 3.

Watchdog works as follows: it maintains a buffer of recently sent packets and compares each

overheard packet with the packet in the buffer to see if there is a match. If so, the packet in

the buffer is removed, since it has been forwarded on. If a packet has remained in the buffer

for longer than a certain timeout, the watchdog increments a failure tally for the node

responsible for forwarding on the packet. If the packet exceeds a certain threshold

bandwidth, it determines that the node is misbehaving and sends a message to the source

notifying of the misbehaving node. (8)

According to the specification, when no encryption is used the payload of the packet can be

checked on forwarding. We therefore expect this system to be resilient not only against

selfish nodes but also against malicious nodes. Reputation value of nodes is incremented in

time, allowing resocialization of nodes that change their behavior.

Drawback of this approach is that it does not punish nodes that do not cooperate, but rather

relieves them of the burden of forwarding for others, whereas their messages are forwarded

A B C
B->C

Figure 3 Node A overhearing message sent from B to C

9

without complaint. This way, the misbehaving nodes are rewarded and reinforced in their

behavior. Another problem is that a node trusts only accusation from one node and it is easy

to subvert such accusation and innocent node might be wrongly penalized.

2.1.2 Context-Aware Detection

This proposal was first published in (9) as a reaction to the Watchdog mechanism. According

to authors, there is no need to attack data forwarding phase when an attacker can more

efficiently attack the route discovery phase. Their proposal therefore focuses on route

discovery phase.

Each node observes behavior of all its neighbors. When it detects some misbehavior (i.e. not

forwarding the route discovery packet), it sends alarm message to the source of the request.

The source node executes an inference scheme based on majority voting to rate an accused.

Source node can later on advertise this rating and it can be used by knowledgeable nodes to

deny any future service to the attackers.

Every time after sending route requests, a node waits some amount of time and collects alarm

messages. These messages are always evaluated in the context of the actual route discovery.

To convict a culprit, more than three accusations are needed. If there is only one accusing

node, it is itself considered to be an attacker.

The drawback of this approach is that it is more beneficial for a node not to send the alarm

messages, as while sending an alarm message it risks that it will be the only accuser and it

will be regarded as an attacker.

Another problem is that a selfish node can make use of this scheme to avoid forwarding

foreign packets. If a node is considered to be an attacker, no one wants to route its packets via

it and it therefore saves energy while still being able to send its own packets.

2.1.3 CORE

The idea behind CORE (10) is that only positive rating factors are distributed among the

entities while the negative ranking factors are evaluated locally. While sending packet to a

node, the sender observes behavior of its neighbor. When misbehavior is detected, the

reputation value is decreased. On the other hand positive observations received from other

nodes cause the reputation value to rise. There are no special packets used to spread positive

observation. Receiving a packet which has before been forwarded by a node A is a positive

observation of node A.

10

While evaluating report messages and observations, CORE considers past observations more

relevant than recent ones. This way a short-time problem on communication link does not

affect node’s reputation. Reputation value is also decremented along time, so if a node is idle

and does not want to cooperate, its reputation lowers.

In CORE the reputation is evaluated with respect to different functions (e.g. route discovery,

packet forwarding). Overall reputation of a node is calculated as weighted mean of these

functional reputations. According to the authors more relevance should be given to the

packet forwarding function.

CORE punishes misbehaving nodes by not forwarding their packets. It does not use

reputation information for path evaluation, so packets are still routed via misbehaving links.

This way the selfish nodes do not save energy and selfish behavior does not pay off. However

there is higher risk for sender that a packet will not reach its destination when a selfish node

refuses to forward it.

2.1.4 SORI

The SORI proposal (11) combines node observation, information sharing between direct

neighbors and probabilistic dropping of packets originating from nodes considered

malicious.

The reputation value of a neighbor is calculated as a number of packets the neighbor was

asked to forward divided by number of packets it really forwarded.

When the reputation value changes significantly, the new value is broadcasted to all

neighbors. To calculate overall reputation value, own observation and received notifications

are combined weighted by the number of requested packets and by the reporter reputation.

If a node is requested to forward a packet originating from a node with low reputation, this

packed is probabilistically dropped.

Similarly to CORE, the reputation value is not used for evaluation of routing paths, so selfish

nodes are still being requested to forward packets for other nodes, while not being able to

send their own packets. Again this approach does not ensure better overall performance of a

network with selfish nodes, but rather serves as a motivation for correct behavior.

2.1.5 OCEAN

The aim of OCEAN (12) is to show that it is possible to ensure performance similar to

previous proposals without using any sophisticated and potentially vulnerable techniques of

reputation propagation throughout the network.

11

The reputation of a neighbor is evaluated using only locally available information. For every

neighbor a node counts how many times it forwarded a packet it was requested to forward

(which increases reputation value) and how many times it failed to forward a packet (which

decreases reputation value).

The reputation value is then used in DSR route discovery avoid lists: When initiating a route

request, a node puts a list of nodes it considers misbehaving at the end of the Route Request

message. Every node receiving the request first checks whether it was received from a node

contained in the Route Request avoid list. If it was, the packet is dropped. If it was not, the

node adds its own list of untrusted nodes and forwards the packet further on.

As this system prevents selfish nodes from both sending and forwarding packets, it is actually

a low-cost way of isolation of misbehaving nodes from the network.

2.2 Comparison

In this chapter we presented five proposals which use different inputs and reputation

evaluation function. We have seen that some proposals may cause higher communication

overhead, while some do not use any special packets at all. We summarized our first findings

about the systems in Table 1.

While all being called reputation systems, the purpose of each system is slightly different.

There are two systems designed primary to ensure high network throughput even in presence

of misbehaving nodes (Watchdog and Pathrater, Context Aware Detection). Two systems aim

to enforce cooperation by punishing misbehaving nodes and motivating them to act correctly

(CORE and SORI). The purpose of the last system (OCEAN) is to completely isolate

misbehaving nodes from the network.

All systems evaluate reputation based on observation of packet forwarding and/or route

discovery responses. Only one of the proposals (Watchdog and Pathrater) considers

malicious nodes. In our comparison we will therefore focus more on routing functions.

There are two main ways of calculating neighbor reputation from direct observations.

Watchdog and OCEAN use an approach in which a reputation value is incremented with

every positive and decremented with every negative observation. In CORE and SORI the

reputation value is calculated as a ratio of number of successfully forwarded packets to the

number of all packets the neighbor was requested to forward.

Most of the systems give an opportunity for reintegration of a node in case it changes its

behavior. It is usually ensured by some timeout period after which a node is given second

12

chance or by evaluation formula which considers recent observation and makes it possible for

a node to gain again enough positive observations.

Watchdog

and
Pathrater

Context
Aware

Detection
CORE SORI OCEAN

Considered attackers

Selfish nodes     

Malicious nodes 
   

Adaptability
    

Possibility of re-integration 


  

Uses
    

Own experience 


  

Observations
    

Neighbor notifications
 

 


Information from nodes along the route  
  

Information from route requests
   



Information spreading
    

Negative observations  





Positive observations
 

 


Avoid lists
   



Reaction to a misbehaving node
    

Avoid routing through a misbehaving node  
 



Refuse to route / drop packets from a node
 

  

Refuse to route / drop packets for a node
    

Consequences for a misbehaving node
    

Forwards packets
 

 


Sends packets  
  

Receives packets     

Saves energy  
 



Table 1 Comparison of reputation systems

Several methods of reputation information sharing have been mentioned. Watchdog and

Pathrater and Context Aware Detection require an observer of node misbehavior to send

information to the source. While this way reputation information can be propagated to

distant parts of the network, there is a risk of excessive communication overhead (especially

in case of Context Aware Detection).

CORE and SORI use observations from direct neighbors, which enables a node to have a good

overview of its neighborhood. The disadvantage is that a node can base its routing decisions

only on this knowledge and is not able to evaluate reliability of more distant nodes.

In OCEAN avoid lists are enlarged by each hop in the route. This way each node practically

decides the following node on the route, while not having any information about possible

13

successive hops. This solution does not make use of the features of DSR protocol and could

be possibly used with another on-demand protocol (e.g. AODV).

We will see in the fourth chapter how these differences affect network performance in

different situations.

14

3 SensNet Simulation Framework

3.1 Base Platform

At the beginning of our research we evaluated several existing simulators and frameworks.

We were not able to find any available framework covering all our requirements. Finally we

decided to develop our own framework for wireless sensor network simulations. We chose

OMNeT++ as a base platform and its Mobility framework as a starting point for our

implementation.

3.1.1 OMNeT++

OMNeT++ is a public-source, component-based, modular and open-architecture simulation

environment available online at (13).

In general OMNeT++ is a discrete event simulator which can be used for wide variety of

purposes like modeling of traffic of telecommunication networks, protocols, queueing

networks, multiprocessors and distributed hardware systems, validating hardware

architectures, evaluating performance of complex software systems and so on.

An OMNeT++ model consists of hierarchically nested modules. Modules communicate

through message passing. They can send messages either directly to their destination or

along a predefined path, through gates and connections. Modules can have their own

parameters, which can be used to customize module behavior and to parameterize the

model's topology.

OMNeT++ simulation can make use of several user interfaces for different purposes. In our

simulation we use Tcl/Tk graphical user interface for debugging and presentation and faster

command-line interface for simulations of large networks.

The simulator and user interfaces and tools are portable – they work on Windows, Mac OS

and several Unix-like systems, using various C++ compilers.

3.1.2 Mobility Framework

Mobility framework (14) is intended to support wireless and mobile simulations within

OMNeT++. The core framework implements support for node mobility, dynamic connection

management and a wireless channel model. Additionally the core framework provides basic

modules that can be derived in order to implement own modules.

15

Mobility Framework is a good basis for further work, but unfortunately currently

implemented set of protocols and functionalities is quite limited and instead of building on

top of this framework we had to reuse parts of its code to develop our own framework aside

from existing ones.

3.1.3 SensNet Framework

We extended functionality of Mobility Framework in these areas:

- Energy consumption – It is now possible to set battery capacity of each node and

energy consumption of network interface card in different modes of operation

(send/receive/sleep). When there is no energy in battery, node cannot send and receive

packets anymore.

- Power control – It is now possible to set for each packet at which power level it will be

sent.

- Reputation system – Reputation system module in each node keeps and evaluates

information about other nodes in the network. It can be used by application layer,

network layer or routing module.

- Behavior control – Every node has its own behavior control module, which makes

controlling behavior of a node much easier. Having behavior control as a separate module

makes complex behavior decisions possible.

- Hidden communication – Every module has its hidden input/output simulating

hidden communication channel between nodes. It is now possible to simulate collusion

attacks incorporating several nodes.

- Simulation control – We added simulation manager into our network. It can load an

XML file with complex scenario settings and send simulation control messages to nodes

via their simulation control input.

- Simulation output – We added new output mechanism which can be used for writing

values into CSV1 files. These files can be further processed by any text editor or imported

into a spreadsheet application.

We used main ideas and parts of the source code of Mobility Framework. Our framework

uses the same channel control, 802.11 network interface card and mobility implementation.

We preserved Blackboard in each node for backwards compatibility. We added several

modules to nodes, global scenario manager and made minor modifications in NIC code to

enable simulation of energy consumption.

1 Comma-separated values

16

We also simplified address model of Mobility framework by removing separate application

address. Thus every node in SensNet framework has two addresses:

- Network layer address – Is used by application and network layer and for routing. In

our implementation it has value of network layer module id.

- MAC address – Can be obtained for given address via ARP protocol.

We implemented set of modules that can be directly used or inherited in simulations. As a

general rule modules named Basic* provide basic functionality and are intended to be base

classes for custom modules. These modules should not be used directly. For some modules

we also provide Simple* variants that implement some functionality and can be used in

simulations.

3.2 Network

In the simulation all nodes are located in a fixed-size area. Each node is represented as a

compound module described in the next section. Aside from regular nodes there is also a

special node called sink, which is collecting data from hosts.

Communication between nodes is established by Channel Control. This module evaluates

node positions and dynamically creates wireless channels between them. When a host

receives a packet, its transport parameters (receive power, S/R ratio, bit errors) are evaluated

and the packet is either accepted or discarded.

We extended the simulation model by introducing Scenario Manager. This module has

direct connection with all hosts and can control their behavior during the simulation.

Scenarios are given as an XML file defining events to happen in a given time. We use this

functionality for scheduling output times, behavior changes and to quit the simulation after

given time.

Output Control is used to output lines to CSV files. All basic data types as strings, integers

and floats can be exported for further analysis in a separate application.

For evaluation of communication we use Packet Counter module. Every packet being sent

or received is notified to this module. When requested by Scenario Manager at the end of the

simulation the statistics are written to output files. Detailed results for every node as well as

aggregate results for the whole network are outputted.

17

3.3 Node

A typical node is a compound module consisting of several modules. There are three possible

means of communication with a node:

- Network Interface Card (NIC) – Enables wireless communication with other nodes

in its wireless range.

- Simulation Control Input – Connected to Simulation Manager, it receives simulation

control messages and forwards them to Mobility module, Traffic Generator or Behavior

Control

- Hidden Input/Output – Can be used for hidden communication with other nodes or

with a separate module managing collusion attacks.

Schema of a typical node is shown on Figure 4.

3.3.1 Mobility

Mobility module sets the node position in the area.

For some simulation scenarios we use Random Waypoint model mobility for simulating

moving nodes. In this mobility model, a node randomly chooses new destination and speed

and starts moving. When reaching the target position, it waits for a random time and then

chooses a new target position. (15)

Battery

NIC

Network Layer

Application Layer

Traffic Generator

Routing

Mobility

Reputation

System

Behavior

Control

Simulation Control

In

Hidden In/Out

Blackboard

ARP

Figure 4 Schema of a typical node in SensNet framework

18

3.3.2 Blackboard

The Blackboard module was preserved for compatibility with some modules from Mobility

Framework. It is used for information sharing between modules in the node.

3.3.3 Traffic Generator

This module can be used for generating simulation traffic. According to its settings it

periodically sends traffic generation requests to the application layer.

3.3.4 Application Layer

In some simulations application functionally might be quite complex, however in our

simulation the application layer only accepts requests from the Traffic Generator and sends

application packets to other nodes.

3.3.5 Network Layer

This module takes care of network communication. It receives packets from application layer

and sends them down to the Network Interface Card. Using Routing module it sets routing

paths of the packets. It also forwards packets from the NIC to the application layer.

We created two implementations: BasicNetworkLayer which only sends packets up or

down and RoutingNetworkLayer which upon receiving a packet from application layer

requests Routing module for a route to the packet destination.

3.3.6 ARP

Address Resolution Protocol translates network addresses to MAC addresses. Our simple

implementation SimpleArp directly converts network address (which is in fact id of the

Network Layer module of a host) to the MAC address (id of the NIC module of a host).

3.3.7 Routing

Routing module accepts RouteQuery messages from Network layer. In order to find a route

to the destination, it first checks its cache. If the route is not yet known, it starts route

discovery and responds with RouteQueryResponse to the network layer.

We implemented SimpleRouting which is only able to route messages to the node’s direct

neighbors and DSRRouting, which implements DSR routing algorithm (16) extended with

reputation system support.

19

3.3.8 NIC

Network Interface Card implementation was taken from the Mobility Framework. In our

framework we retained all physical and MAC layer types, however only implementation of

802.11 was modified to work properly with our new node scheme.

It consists of four submodules:

3.3.8.1 MAC

Medium Access Control was modified so that upon each arrival of a message from network

and upon each send request it checks available battery capacity. If the battery is empty,

message is removed.

3.3.8.2 Decider

Based on signal-to-noise ratio and other settings the Decider decides whether a packet was

received correctly or not.

3.3.8.3 snrEval

This module evaluates signal-to-noise ratio of received packets.

3.3.8.4 Radio

Radio communicates with other radios in a communication distance via Channel Control

module. We simulate a simple radio with one channel and all-directional antenna.

3.3.9 Behavior Control

Other modules ask behavior control on how to behave in different situations. For instance,

routing module asks if it should send a correct or false response to some request. Different

kinds of node misbehavior can be implemented here.

In our simulation we use the behavior module to emulate selfish and malicious nodes.

3.3.10 Reputation System

Other modules ask reputation systems questions about actions connected with reputation. In

our simulation it communicates frequently with routing module. Reputation System module

can be asked to evaluate possible DSR routing path or to decide whether to react to a route

request or not. All incoming and outgoing packets are notified to this module. It can also add

its own information to the DSR Route Request packets.

We implemented all considered systems as Reputation System modules.

20

3.3.11 Battery

Battery module is given total energy capacity and energy consumption in different modes of

radio operation as parameters. Every time radio is in operation, it consumes energy in battery

module. When the battery runs out of energy, NIC stops to operate and discards all incoming

packets.

21

4 Simulation of Reputation Systems

In order to make a complex objective comparison of reputation systems we implemented all

systems according to descriptions in the papers. We focused on efficiency of routing and

packet forwarding leaving alone additional security features like encryption or digital

signatures.

Source code of the simulation is available on the attached CD as the RepSysSim project. We

created a multiplatform application based on our SensNet framework. For starting

simulation runs we prepared a Python script, which can be found in the Final directory.

4.1 Test Scenarios

We defined a set of 31 test scenarios and simulated all considered systems in every test

scenario. We ran each test ten times and averaged the results. Simulation results were

obtained during few hours on a powerful sixteen-processor server.

In order to make the simulation as similar to real deployment as possible we used a

communication pattern in which every node in the network periodically sends data to the

base station. Simulation time for most of the scenarios was 1000 seconds. Simulations of

limited energy resources were left running for much longer time so that all nodes ran out of

energy before the end and we could evaluate how energy efficient the network was. We

counted total number of packets sent and delivered as well as number of packets originating

from selfish and non-selfish nodes.

Common scenario settings are presented in Table 2, while specific settings for each scenario

are given in Table 3. Hardware settings correspond to the referential MICA2 sensor node.

(15)

Area settings Application settings

Dimension (m) 200 x 200 MAC 802.11

Number of nodes 100 Sending capacity (kbps) 38,4

Avg. number of neighbors 4.3 Application CBR

Initial placement Uniform Application packet size (B) 24

Hardware settings

Frequency (Mhz) 915 Receive power cons. (mW) 30

Min. transmit power (mW) 0.01 Min. transmit power cons. (mW) 30

Max transmit power (mW) 3.162 Max. transmit power cons. (mW) 81

Sensitivity (dBm) -110

Table 2 Common scenario settings

22

Performance with various numbers of selfish nodes

Measures how the reputation system reacts to large
number of selfish nodes present in the network.
Good reputation system should be resilient against
large portion of selfish nodes.

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Sending interval (s) 100

Sending start jitter (s) 100

Code Number of selfish nodes Dropping probability of selfish nodes

NSN1 0 0.5

NSN2 10 0.5

NSN3 20 0.5

NSN4 30 0.5

NSN5 40 0.5

NSN6 50 0.5

Performance under various number of connections

Good reputation system should not generate much
of excessive traffic. Overall application performance
(i. e. number of application packets the network is
able to deliver) should not be kept as high as
possible.

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Number of selfish nodes 20

Dropping prob. of self. nodes 0.5

Code Sending interval Start jitter

NC1 200 200

NC2 100 100

NC3 50 50

NC4 25 25

NC5 12.5 12.5

NC6 6 6

Performance under various speed of movement

In some applications it may be important to react
fast on changes in network topology caused by node
movement. Good reputation should be flexible in
evaluating reputation of new neighbors.

Number of selfish nodes 20

Dropping prob. of self. nodes 0.5

Sending interval (s) 100

Sending start jitter (s) 100

Mobility model Random waypoint

Code Speed (m/s) Pause time (s)

SM1 0 0

SM2 0.1 100

SM3 0.2 50

SM4 0.4 25

SM5 0.8 12

SM6 1.6 6

23

Performance under various dropping probability of selfish nodes

Measures how the reputation system reacts to
different behavior of selfish nodes.

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Sending interval (s) 100

Sending start jitter (s) 100

Code Number of selfish nodes Dropping probability of selfish nodes

DP1 20 0.2

DP2 20 0.4

DP3 20 0.6

DP4 20 0.8

DP5 20 1.0

Performance with nodes changing their behavior

It is possible that a node change its behavior during
the network operation. Good reputation system
should be flexible and able to raise reputation of a
well behaving node and lower reputation of node
that changed to be selfish.

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Sending interval (s) 100

Sending start jitter (s) 100

Code Number of selfish nodes Dropping probability of selfish nodes Time between change

NCB 40 0.5 100

Performance with limited energy resources

Energy resources have great importance in wireless
sensor networks. Good reputation system should
protect nodes against energy wasting by sending
useless packets. Selfish nodes should not have
advantage over well behaving nodes

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Sending interval (s) 100

Sending start jitter (s) 100

Battery capacity (J) 18000

Code Number of selfish nodes Dropping probability of selfish nodes

LER1 20 0.5

LER2 60 0.5

Performance with malicious nodes

In this scenario we introduce a portion of nodes that
change content of each packet they are forwarding.

Mobility model None

Speed (m/s) 0

Pause time (s) 0

Sending interval (s) 100

Sending start jitter (s) 100

Code Number of malicious nodes Probability of packet change

MN1 10 1.0

MN2 30 1.0

MN3 50 1.0

MN4 70 1.0

MN5 90 1.0

Table 3 Specific scenario settings

24

4.2 Results

As we have already seen in the second chapter the aims of the systems are slightly different,

which should be taken into account in result evaluation.

4.2.1 Number of Selfish Nodes

In the first set of tests we focused on performance under various numbers of selfish nodes

with the same probability of packet dropping.

None Watchdog Context Aware CORE SORI OCEAN

NSN1 910,9 911,5 908,0 911,2 911,2 911,2

NSN2 689,8 707,7 673,1 692,7 692,7 694,7

NSN3 443,8 454,7 437,2 460,4 460,4 461,0

NSN4 291,9 274,2 265,8 279,6 279,6 280,6

NSN5 191,0 191,1 179,8 197,2 197,2 196,9

NSN6 123,2 118,5 119,3 119,3 119,3 119,3

Table 4 Total number of packets delivered to the base station with various numbers of selfish
nodes

As we can see in Table 4 when there are no selfish nodes in the network (NSN1) about 91 % of

packets is delivered. The packet loss is due to simulated errors in wireless transfer. We did

not implement any mechanism of end-to-end control of packet delivery and resending as we

believe that in the moment of eventual packet resending the information is outdated and it is

more efficient to wait and send a new and actual value in next turn. This way also energy

resources are saved.

When the number of selfish nodes gets higher, the reputation systems start to be able to

identify misbehaving nodes and to find alternative routes around them. This way Watchdog

and Pathrater can increase network efficiency by 2.5 % in the NSN3 scenario. In the same

scenario CORE and SORI, i.e. the systems that let selfish nodes forward packets instead of

isolating them, prove to be more efficient than Watchdog and Pathrater, increasing network

efficiency by 4 %. In the same line OCEAN also seems to be better able to avoid routing

through selfish nodes and also causes 4 % increase in number of delivered packets.

When the number of selfish nodes is too high (50 % selfish nodes in NSN6), it becomes

impossible to find routes which do not contain selfish nodes and even reputation systems

cannot solve the problem.

4.2.2 Dropping Probability

In the second set of tests we measured how the number of delivered packets depends on

probability of packet dropping by selfish nodes.

25

None Watchdog Context Aware CORE SORI OCEAN

DP1 786,6 799,1 784,7 790,1 790,1 790,1

DP2 711,9 684,0 696,0 672,9 672,9 672,5

DP3 672,7 651,4 652,3 650,0 650,0 650,8

DP4 682,6 660,4 657,7 644,0 644,0 646,7

DP5 739,5 740,6 737,9 740,4 740,4 740,4

Table 5 Total number of packets delivered to the base station with various dropping probability of
selfish nodes

As we can see in Table 5 possibilities for reputation systems are quite limited in extreme

cases. When dropping probability is low (20 % in DP1), it is difficult for a system to correctly

distinguish between node misbehavior and transport error. When dropping probability is

high (1.0 in DP5), selfish nodes drop all routing packets and thus do not take part in

communication. Therefore results are again very similar.

Interestingly in this test performance of networks protected by reputation systems is worse

than performance of unprotected network. This might be caused by the fact that reputation

systems are not able to react to changing behavior of the nodes, i.e. when a node forwards

one packet correctly they increase its reputation too much and when it behaves incorrectly

only in a portion of cases, the reputation is not sufficiently decreased.

4.2.3 Number of Connections and Speed of Movement

Increasing number of connections and speed of movement are a challenge for routing

protocol design. Good routing protocol should ensure high delivery efficiency in high network

traffic and should be flexible enough to work in a network with changing topology. In these

two sets of tests we measured how introducing reputation systems affect efficiency of DSR

routing.

None Watchdog Context Aware CORE SORI OCEAN

NC1 329,5 333,4 326,0 342,1 342,1 339,3

NC2 689,8 707,7 673,1 692,7 692,7 694,7

NC3 1 458,6 1 424,8 1 340,6 1 444,4 1 444,4 1 433,5

NC4 2 789,6 2 724,1 2 657,1 2 646,0 2 646,0 2 609,3

NC5 5 534,1 5 457,1 5 353,5 5 604,8 5 604,8 5 543,4

NC6 11 666,2 11 715,9 11 263,3 11 537,0 11 537,0 11 461,9

SM1 689,8 707,7 673,1 692,7 692,7 694,7

SM2 687,8 643,2 666,4 664,5 664,5 651,2

SM3 573,1 601,7 583,6 573,0 573,0 571,7

SM4 476,8 496,8 511,2 515,3 515,3 499,5

SM5 504,5 501,1 508,7 495,9 495,9 495,9

SM6 498,3 496,5 502,0 508,7 508,7 508,7

Table 6 Total number of packets delivered to the base station with increasing number of
connections and speed of movement

26

Table 6 shows that all systems are able to handle increasing number of connections quite

well. There is only a little decrease in number of delivered packets in Context Aware

Detection protected network, however it is in maximum just 4 %.

4.2.4 Limited Energy Resources

One of the most important questions we asked at the beginning of our research was to find

out how reputation systems affect energy consumption of the network. We let every network

in operation until all nodes ran out of energy and counted packets successfully delivered to

the base station.

None Watchdog Context Aware CORE SORI OCEAN

LER1 413,6 420,2 400,1 409,5 409,5 408,7

LER2 173,9 166,6 160,5 170,1 170,1 170,0

Table 7 Total number of packets delivered to the base station with limited energy resources

Figure 5 Total number of packets delivered to the base station with limited energy resources

Table 7 and Figure 5 show that communication overhead caused by reputation systems does

not significantly affect energy consumption of the network. Using Watchdog and Pathrater in

a network with relatively well behaving nodes (only 20 selfish nodes in LER1) it is possible to

deliver slightly more packets than without any protection. We can see that in all cases nodes

naturally run out of battery after forwarding constant amount of packets.

4.2.5 Malicious Nodes

As we have already mentioned in the previous chapter, protection against malicious nodes

was not the main motivation for systems considered in our comparison. However we decided

0

50

100

150

200

250

300

350

400

450

None Watchdog Context
Aware

CORE SORI OCEAN

LER1

LER2

27

to include a set of tests measuring protection against presence of nodes intentionally

changing contents of packets they were requested to forward.

None Watchdog Context Aware CORE SORI OCEAN

MN1 661,3 654 614,4 631,9 631,9 631,9

MN2 381,2 352,6 325,5 376,7 376,7 376,7

MN3 171,4 156 146,9 165,2 165,2 165,2

MN4 97,2 81,3 93,6 98,6 98,6 98,6

MN5 58,6 41,8 56,1 60,9 60,9 60,9

Table 8 Total number of packets correctly delivered to the base station in presence of malicious
nodes

Averaged results in Table 8 show that considered reputation systems do not provide

protection against misbehaving nodes. On the contrary, tendency to route all packets via few

more trusted nodes cause more packets to be compromised when there is a misbehaving

node in such a route.

However in the next chapter we will see that it is possible to efficiently use reputation

systems to protect packets against intentional changes if this aim is taken into account when

designing a reputation system.

28

5 Protection against Malicious Nodes

5.1 New Reputation System Design

While analyzing results from the previous chapter we made several observations about

reputation systems:

1. Evaluating reputation based on observations of forwarding of routing packets is not very

reliable as none of the considered systems was able to correctly distinguish between

communication errors and intentional packet dropping (Section 4.2.2)

2. There is no real difference between systems punishing misbehaving nodes by dropping

their packets and other systems. (Section 4.2.1)

3. Existing reputation systems did not prove that they could significantly improve routing

efficiency.

We came to conclusion that even though the idea behind reputation systems is promising,

their impact on routing functions is quite limited. However we decided to apply the

reputation approach on another issue: We tried to improve integrity in a network where no

digital signatures or encryption are used and data are transferred in plain text form. Using

effective reputation system might be a low energy and low cost solution for such networks.

We can summarize the main principles of our new reputation system design as follows:

- Only integrity of forwarded packets is observed by neighboring nodes as it is the only

observation which can be reliable enough in real deployment.

- Instead of separate alarm packets or Route Request packets we use Route Reply packets

to distribute routing information throughout the network. This idea arises from a

characteristic communication pattern of wireless sensor networks, where a node A is

sending packets to the base station BS. In order to find a route it sends Route Request

towards the base station and receives reply which is forwarded by nodes between the base

station and the node A. As these nodes have the best knowledge about behavior of nodes

between A and BS, appending reputation information at the end of Route Reply packet is

the fastest way of spreading the information towards potential users of the route.

- In order to ensure data integrity it is vital to avoid routing via malicious nodes. While

evaluating possible paths at the end of route discovery, the rating of a single path is not

the average value of node reputation, but the lowest value.

29

5.2 Protocol Specification

We were experimenting with several versions of protocol, especially with the parameters of

the reputation value and with selection of reputation information which should be spread

around the network. Finally we came to reputation system described in this section.

Watchdog: Every node observes communication of its neighbors. When it sends a packet

forward request to some neighbor or overhears some neighbor asking another neighbor to

send a packet, it stores a copy of the packet into its internal buffer. When it overhears the

packet being forwarded it checks its content. If the content corresponds to the packet in the

buffer, it is a positive observation (value 10.0). If the content is different, it is a negative

observation (value 1.0). If the node does not hear the packet being forward in a given timeout

it is removed from the buffer.

Every node preserves its own reputation table. For every node it knows about in the network

it stores its reputation value and a confidence value of this record. Reputation of a node it

encounters for the first time is 5.0 with confidence 1.0.

When a node receives or is requested to forward a Route Reply packet, it checks its contents

for notifications from other nodes. Such notification consists of address of the reporting

node, address of the observed node, reputation value and confidence value. A node stores

only the most actual notification of each node about each other particular node.

Whenever a node makes new observation or receives new notification it updates reputation

value of the node. Reputation value is evaluated using following function:

𝑵𝑺 = 𝑽𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒏𝒐𝒅𝒆′𝒔 𝒐𝒘𝒏 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔

𝑫𝑺 = 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒘𝒏 𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏𝒔

𝑵𝑵 = (𝑹𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 𝒓𝒆𝒑𝒐𝒓𝒕𝒆𝒓 ∗ 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒐𝒇 𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏

𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔

∗ 𝑵𝒐𝒕𝒊𝒇𝒊𝒆𝒅 𝒓𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆)

𝑫𝑵 = (𝑹𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 𝒓𝒆𝒑𝒐𝒓𝒕𝒆𝒓 ∗ 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒐𝒇 𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏)

𝒏𝒐𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔

𝑹𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆 =
𝟏𝟎. 𝟎 ∗ 𝑵𝑺 + 𝑵𝑵

𝟏𝟎. 𝟎 ∗ 𝑫𝑺 + 𝑫𝑵

30

In other words, the new reputation value is a weighted average of all observations and

notifications. Values are weighted their corresponding confidence values and reputation of

reporter. Node’s own reputation is set to 10.0 and confidence value is a number of own

observations.

When a node sends or forwards Route Reply packet, it appends reputation record of the node

it has the latest observation of. This way the most actual reputation information is spread by

the node with the best knowledge of the neighbor.

When the reputation system is asked by Routing module to choose the best path for a packet,

it calculates rating of every path as:

𝑷𝒂𝒕𝒉 𝒓𝒂𝒕𝒊𝒏𝒈 = 𝒎𝒊𝒏(𝑹𝒆𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 𝒗𝒂𝒍𝒖𝒆𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒏𝒐𝒅𝒆𝒔 𝒊𝒏 𝒕𝒉𝒆 𝒑𝒂𝒕𝒉)

Path with the highest rating is chosen as the packet route.

5.3 Simulation Results

We simulated our new reputation system using tests MN1 – MN5 from our former

simulation.

Unprotected Network New Reputation System

MN1 661,3 666,3

MN2 381,2 385

MN3 171,4 183,7

MN4 97,2 101,9

MN5 58,6 61,9

Table 9 Number of correctly received packets in unprotected network and in network protected
with our new reputation system

As we can see in Table 9 our reputation system can improve data integrity in a network with

malicious nodes by up to 7 % in the MN3 scenario (50% of malicious nodes). This result is

better than the results of reputation systems focused on routing functions and shows that the

reputation system can be used as a low cost way of improving data integrity in the network.

However the improvement is not as significant as to ensure sufficient integrity on its own.

31

6 Conclusion

The aim of our research was to evaluate capabilities of reputation systems in wireless sensor

networks. We selected several systems and made a theoretical comparison.

In the next step we prepared a complex wireless sensor network simulation framework

SensNet, which can also be used for a large variety of simulations in the future. We

implemented selected systems and carried out a series of tests of our systems.

While analyzing the results of the simulations we found that reputation systems can slightly

improve performance of wireless sensor networks. We made several observations on

differences between selected systems. We stated that the idea of punishing nodes considered

misbehaving by dropping their packets actually deteriorates network performance and we

found it more efficient for a network to forward packets via such nodes even if there is a risk

that the packets will get lost.

We identified the main obstacle of reputation system operation, which is the unreliability of

packet overhearing. In a simulation which is closer to real conditions, with background noise

and transmission errors, it is difficult for a reputation system to distinguish between

intentional packet dropping and communication error. Reputation systems which rely mainly

on observations of broadcasted Route Request packets are not very effective. In general we

observed the highest increase of network performance by only 4 %.

Because of this unreliability we stated that the only observation a node can make is

observation of forwarded packet integrity. Thus we tried to focus on a slightly different issue

and explored possibility of using reputation systems to ensure higher integrity of data

forwarded in otherwise unprotected network. Using observations from previous experiments

we decided on basic principles of a new reputation system. We introduced a new way of

spreading reputation information and defined a function for evaluating reputation values. We

showed in simulation that using our reputation system in a network with 50 % percent of

nodes malicious it is possible to increase number of correctly delivered packets by 7 %.

In general reputation systems proved to be a possibly working way of improving security in

wireless sensor networks. While the increase of network performance in presence of selfish

nodes was not very significant, we believe that after further research and improvements

reputation systems could be used as a low-cost way of improving integrity of data in networks

with lower security requirements.

32

Bibliography

1. Palafox, Luis E. and Garcia-Macias, J. Antonio. Security in Wireless Sensor

Networks. [book auth.] Yan Zhang, Jun Zheng and Miao Ma. Handbook of Research on

Wireless Security. s.l. : Information Science Reference, 2008.

2. Romer, Kay and Mattern, Friedemann. The design space of wireless sensor

networks. Wireless Communications, IEEE. 12 2004, Vol. 11, 6, pp. 54-61.

3. Johnson, David B. Routing in Ad Hoc Networks of Mobile Hosts. Proceedings of the

Workshop on Mobile Computing Systems and Applications. 12 1994, pp. 158-163.

4. Dolev, D. and Yao, A. On the security of public key protocols. IEEE Transactions on

Information Theory. 1983, Vol. 29, 2, pp. 198 - 208.

5. Sobeslavsky, Petr. Key Management in Wireless Sensor Networks. Faculty of

Informatics, Masaryk University. Brno : s.n., 2008. Term Project.

6. Buchegger, Sonja and Le Boudec, Jean-Yves. Nodes bearing grudges: towards

routing security, fairness, and robustness in mobile ad hoc networks. 10th Euromicro

Workshop on Parallel, Distributed and Network-Based Processing: Proceedings. Canary

Islands : Inst Elect & Electronic Engineers, 2002, pp. 403-410.

7. —. Performance Analysis of the CONFIDANT Protocol: Cooperation Of Nodes? Fairness In

Dynamic Ad-hoc Networks. Proceedings of IEEE/ACM Symposium on Mobile Ad Hoc

Networking and Computing (MobiHOC). 2002, pp. 226-236.

8. Marti, S., et al. Mitigating routing misbehavior in mobile ad hoc networks. International

Conference on Mobile Computing and Networking: Proceedings of the 6 th annual

international conference on Mobile computing and networking. 2000, Vol. 6, 11, pp. 255-

265.

9. Krishna, Paul. Context aware detection of selfish nodes in DSR based ad-hoc networks.

Proceedings of IEEE GLOBECOM. 2002, pp. 178--182.

10. Michiardi, P. and Molva, R. CORE: A Collaborative Reputation Mechanism to enforce

node cooperation in Mobile Ad hoc Networks. Advanced Communications and Multimedia

Security: IFIP TC6/TC11 Sixth Joint Working Conference on Communications and

Multimedia Security. 9 2002.

33

11. He, Q., Wu, D. and Khosla, P. SORI: A Secure and Objective Reputation-based

Incentive Scheme for Ad-hoc Networks. IEEE Wireless Communications and Networking

Conference (WCNC 2004). 2004.

12. Bansal, S. and Baker, M. Observation-based Cooperation Enforcement in Ad Hoc

Networks. Arxiv preprint cs.NI/0307012. 2003.

13. OMNeT++ Discrete Event Simulation System. [Online] [Cited: 11 1, 2008.]

http://www.omnetpp.org/.

14. Mobility Framework for OMNeT++. [Online] [Cited: 11 1, 2008.] http://mobility-

fw.sourceforge.net/.

15. Shnayder, V., et al. Simulating the power consumption of large-scale sensor network

applications. Proceedings of the 2nd international conference on Embedded networked

sensor systems. NY : ACM New York, 2004, pp. 188-200.

16. Johnson, David B., Maltz, David A. and Hu, Yih-Chun. The Dynamic Source

Routing Protocol (DSR) for Mobile Ad Hoc Networks for IPv4. [Online] 2 2007. [Cited: 11 20,

2008.] http://tools.ietf.org/html/rfc4728.

17. Wikipedia contributors. Wireless sensor network. Wikipedia. [Online] [Cited: 11 1,

2008.] http://en.wikipedia.org/wiki/Wireless_sensor_network.

18. Varga, Andras. OMNeT++ 3.2 User Manual. OMNeT++. [Online] [Cited: 11 1, 2008.]

http://www.omnetpp.org/doc/manual/usman.html.

19. Camp, T., Boleng, J. and Davies, V. A survey of mobility models for ad hoc network

research. Wireless Communications and Mobile Computing. 2002, Vol. 2, 5, pp. 483-502.

34

Appendix A – Simulation Results

This appendix consists of several tables of averaged test results for every reputation system in

the network. The numbers were used as input for analysis in the fourth, fifth and sixth

chapter of this paper.

These tables as well as detailed results from every single test run can be found in original CSV

files and Excel files on the attached CD.

35

Average Results of All Test Runs in Unprotected Network

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 910,9 91,1 0,0 0,0 0,0 1 000,0 910,9 91,1

NSN2 1 000,0 689,8 69,0 200,0 131,4 65,7 800,0 558,4 69,8

NSN3 1 000,0 443,8 44,4 400,0 170,9 42,7 600,0 272,9 45,5

NSN4 1 000,0 291,9 29,2 600,0 161,6 26,9 400,0 130,3 32,6

NSN5 1 000,0 191,0 19,1 800,0 148,4 18,6 200,0 42,6 21,3

NSN6 1 000,0 123,2 12,3 1 000,0 123,2 12,3 0,0 0,0 0,0

NC1 500,0 329,5 65,9 100,0 65,4 65,4 400,0 264,1 66,0

NC2 1 000,0 689,8 69,0 200,0 131,4 65,7 800,0 558,4 69,8

NC3 2 000,0 1 458,6 72,9 400,0 283,0 70,8 1 600,0 1 175,6 73,5

NC4 4 000,0 2 789,6 69,7 800,0 531,5 66,4 3 200,0 2 258,1 70,6

NC5 8 000,0 5 534,1 69,2 1 600,0 1 072,6 67,0 6 400,0 4 461,5 69,7

NC6 16 671,0 11 666,2 70,0 3 333,3 2 275,2 68,3 13 333,4 9 391,0 70,4

SM1 1 000,0 689,8 69,0 200,0 131,4 65,7 800,0 558,4 69,8

SM2 1 000,0 687,8 68,8 200,0 144,6 72,3 800,0 543,2 67,9

SM3 1 000,0 573,1 57,3 200,0 119,2 59,6 800,0 453,9 56,7

SM4 1 000,0 476,8 47,7 200,0 100,9 50,5 800,0 375,9 47,0

SM5 1 000,0 504,5 50,5 200,0 99,3 49,7 800,0 405,2 50,7

SM6 1 000,0 498,3 49,8 200,0 100,8 50,4 800,0 397,5 49,7

DP1 1 000,0 786,6 78,7 200,0 151,3 75,7 800,0 635,3 79,4

DP2 1 000,0 711,9 71,2 200,0 137,3 68,7 800,0 574,6 71,8

DP3 1 000,0 672,7 67,3 200,0 131,7 65,9 800,0 541,0 67,6

DP4 1 000,0 682,6 68,3 200,0 133,7 66,9 800,0 548,9 68,6

DP5 1 000,0 739,5 74,0 200,0 142,5 71,3 800,0 597,0 74,6

NCB 1 000,0 282,5 28,3 768,7 144,5 18,8 231,3 138,0 59,7

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 911,2 661,3 91,1 66,1 313,8

MN2 1000 911,2 381,2 91,1 38,1 1 274,6

MN3 1000 911,2 171,4 91,1 17,1 2 418,7

MN4 1000 911,2 97,2 91,1 9,7 3 471,2

MN5 1000 911,2 58,6 91,1 5,9 4 768,7

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 413,6 78,7 334,9

LER2 Packets received: 173,9 94,2 79,7

36

Average Results of All Test Runs with Watchdog and Pathrater

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 911,5 911,5 0,0 0,0 0,0 1 000,0 911,5 911,5

NSN2 1 000,0 707,7 707,7 200,0 136,8 136,8 800,0 570,9 570,9

NSN3 1 000,0 454,7 454,7 400,0 172,0 172,0 600,0 282,7 282,7

NSN4 1 000,0 274,2 274,2 600,0 147,3 147,3 400,0 126,9 126,9

NSN5 1 000,0 191,1 191,1 800,0 149,1 149,1 200,0 42,0 42,0

NSN6 1 000,0 118,5 118,5 1 000,0 118,5 118,5 0,0 0,0 0,0

NC1 500,0 333,4 333,4 100,0 64,0 64,0 400,0 269,4 269,4

NC2 1 000,0 707,7 707,7 200,0 136,8 136,8 800,0 570,9 570,9

NC3 2 000,0 1 424,8 1 424,8 400,0 273,5 273,5 1 600,0 1 151,3 1 151,3

NC4 4 000,0 2 724,1 2 724,1 800,0 520,6 520,6 3 200,0 2 203,5 2 203,5

NC5 8 000,0 5 457,1 5 457,1 1 600,0 1 056,4 1 056,4 6 400,0 4 400,7 4 400,7

NC6 16 671,0 11 715,9 11 715,9 3 333,3 2 249,6 2 249,6 13 333,4 9 466,3 9 466,3

SM1 1 000,0 707,7 707,7 200,0 136,8 136,8 800,0 570,9 570,9

SM2 1 000,0 643,2 643,2 200,0 132,1 132,1 800,0 511,1 511,1

SM3 1 000,0 601,7 601,7 200,0 124,4 124,4 800,0 477,3 477,3

SM4 1 000,0 496,8 496,8 200,0 105,4 105,4 800,0 391,4 391,4

SM5 1 000,0 501,1 501,1 200,0 102,7 102,7 800,0 398,4 398,4

SM6 1 000,0 496,5 496,5 200,0 99,8 99,8 800,0 396,7 396,7

DP1 1 000,0 799,1 799,1 200,0 156,1 156,1 800,0 643,0 643,0

DP2 1 000,0 684,0 684,0 200,0 132,4 132,4 800,0 551,6 551,6

DP3 1 000,0 651,4 651,4 200,0 122,7 122,7 800,0 528,7 528,7

DP4 1 000,0 660,4 660,4 200,0 125,8 125,8 800,0 534,6 534,6

DP5 1 000,0 740,6 740,6 200,0 142,7 142,7 800,0 597,9 597,9

NCB 1 000,0 268,5 26,9 771,6 134,6 17,4 228,4 133,9 58,6

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 911,7 654 91,2 65,4 320,8

MN2 1000 910 352,6 91,0 35,3 1 356,6

MN3 1000 907,5 156 90,8 15,6 2 732,5

MN4 1000 908,9 81,3 90,9 8,1 4 030,9

MN5 1000 908,9 41,8 90,9 4,2 5 558,7

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 420,2 82 338,2

LER2 Packets received: 166,6 88,2 78,4

37

Average Results of All Test Runs with Context Aware Detection

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 908,0 90,8 0,0 0,0 0,0 1 000,0 908,0 90,8

NSN2 1 000,0 673,1 67,3 200,0 130,9 65,5 800,0 542,2 67,8

NSN3 1 000,0 437,2 43,7 400,0 165,4 41,4 600,0 271,8 45,3

NSN4 1 000,0 265,8 26,6 600,0 147,5 24,6 400,0 118,3 29,6

NSN5 1 000,0 179,8 18,0 800,0 140,2 17,5 200,0 39,6 19,8

NSN6 1 000,0 119,3 11,9 1 000,0 119,3 11,9 0,0 0,0 0,0

NC1 500,0 326,0 65,2 100,0 63,0 63,0 400,0 263,0 65,8

NC2 1 000,0 673,1 67,3 200,0 130,9 65,5 800,0 542,2 67,8

NC3 2 000,0 1 340,6 67,0 400,0 259,0 64,8 1 600,0 1 081,6 67,6

NC4 4 000,0 2 657,1 66,4 800,0 517,3 64,7 3 200,0 2 139,8 66,9

NC5 8 000,0 5 353,5 66,9 1 600,0 1 035,3 64,7 6 400,0 4 318,2 67,5

NC6 16 668,0 11 263,3 67,6 3 333,3 2 197,0 65,9 13 333,4 9 066,3 68,0

SM1 1 000,0 673,1 67,3 200,0 130,9 65,5 800,0 542,2 67,8

SM2 1 000,0 666,4 66,6 200,0 138,8 69,4 800,0 527,6 66,0

SM3 1 000,0 583,6 58,4 200,0 120,5 60,3 800,0 463,1 57,9

SM4 1 000,0 511,2 51,1 200,0 102,7 51,4 800,0 408,5 51,1

SM5 1 000,0 508,7 50,9 200,0 101,3 50,7 800,0 407,4 50,9

SM6 1 000,0 502,0 50,2 200,0 102,7 51,4 800,0 399,3 49,9

DP1 1 000,0 784,7 78,5 200,0 153,9 77,0 800,0 630,8 78,9

DP2 1 000,0 696,0 69,6 200,0 135,4 67,7 800,0 560,6 70,1

DP3 1 000,0 652,3 65,2 200,0 127,0 63,5 800,0 525,3 65,7

DP4 1 000,0 657,7 65,8 200,0 126,3 63,2 800,0 531,4 66,4

DP5 1 000,0 737,9 73,8 200,0 142,3 71,2 800,0 595,6 74,5

NCB 1 000,0 271,7 27,2 771,5 139,6 18,1 228,5 132,1 57,8

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 910,3 614,4 91,0 61,4 391,1

MN2 1000 910,3 325,5 91,0 32,6 1 394,1

MN3 1000 910,3 146,9 91,0 14,7 2 564,4

MN4 1000 910,3 93,6 91,0 9,4 3 662,3

MN5 1000 910,3 56,1 91,0 5,6 4 921,5

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 400,1 77,7 322,4

LER2 Packets received: 160,5 89,1 71,4

38

Average Results of All Test Runs with CORE

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 911,2 91,1 0,0 0,0 0,0 1 000,0 911,2 91,1

NSN2 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

NSN3 1 000,0 460,4 46,0 400,0 180,2 45,1 600,0 280,2 46,7

NSN4 1 000,0 279,6 28,0 600,0 154,2 25,7 400,0 125,4 31,4

NSN5 1 000,0 197,2 19,7 800,0 153,3 19,2 200,0 43,9 22,0

NSN6 1 000,0 119,3 11,9 1 000,0 119,3 11,9 0,0 0,0 0,0

NC1 500,0 342,1 68,4 100,0 64,9 64,9 400,0 277,2 69,3

NC2 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

NC3 2 000,0 1 444,4 72,2 400,0 277,6 69,4 1 600,0 1 166,8 72,9

NC4 4 000,0 2 646,0 66,2 800,0 512,0 64,0 3 200,0 2 134,0 66,7

NC5 8 000,0 5 604,8 70,1 1 600,0 1 097,0 68,6 6 400,0 4 507,8 70,4

NC6 16 671,0 11 537,0 69,2 3 333,3 2 225,8 66,8 13 333,4 9 311,2 69,8

SM1 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

SM2 1 000,0 664,5 66,5 200,0 138,1 69,1 800,0 526,4 65,8

SM3 1 000,0 573,0 57,3 200,0 117,5 58,8 800,0 455,5 56,9

SM4 1 000,0 515,3 51,5 200,0 106,7 53,4 800,0 408,6 51,1

SM5 1 000,0 495,9 49,6 200,0 100,3 50,2 800,0 395,6 49,5

SM6 1 000,0 508,7 50,9 200,0 104,9 52,5 800,0 403,8 50,5

DP1 1 000,0 790,1 79,0 200,0 153,6 76,8 800,0 636,5 79,6

DP2 1 000,0 672,9 67,3 200,0 130,1 65,1 800,0 542,8 67,9

DP3 1 000,0 650,0 65,0 200,0 121,8 60,9 800,0 528,2 66,0

DP4 1 000,0 644,0 64,4 200,0 120,9 60,5 800,0 523,1 65,4

DP5 1 000,0 740,4 74,0 200,0 142,7 71,4 800,0 597,7 74,7

NCB 1 000,0 269,8 27,0 771,2 135,4 17,6 228,8 134,4 58,7

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 911,1 631,9 91,1 63,2 341,5

MN2 1000 911,1 376,7 91,1 37,7 1 321,3

MN3 1000 911,1 165,2 91,1 16,5 2 507,0

MN4 1000 911,1 98,6 91,1 9,9 3 558,2

MN5 1000 911,1 60,9 91,1 6,1 4 812,7

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 409,5 76,9 332,6

LER2 Packets received: 170,1 94,1 76,0

39

Average Results of All Test Runs with SORI

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 911,2 91,1 0,0 0,0 0,0 1 000,0 911,2 91,1

NSN2 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

NSN3 1 000,0 460,4 46,0 400,0 180,2 45,1 600,0 280,2 46,7

NSN4 1 000,0 279,6 28,0 600,0 154,2 25,7 400,0 125,4 31,4

NSN5 1 000,0 197,2 19,7 800,0 153,3 19,2 200,0 43,9 22,0

NSN6 1 000,0 119,3 11,9 1 000,0 119,3 11,9 0,0 0,0 0,0

NC1 500,0 342,1 68,4 100,0 64,9 64,9 400,0 277,2 69,3

NC2 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

NC3 2 000,0 1 444,4 72,2 400,0 277,6 69,4 1 600,0 1 166,8 72,9

NC4 4 000,0 2 646,0 66,2 800,0 512,0 64,0 3 200,0 2 134,0 66,7

NC5 8 000,0 5 604,8 70,1 1 600,0 1 097,0 68,6 6 400,0 4 507,8 70,4

NC6 16 671,0 11 537,0 69,2 3 333,3 2 225,8 66,8 13 333,4 9 311,2 69,8

SM1 1 000,0 692,7 69,3 200,0 130,6 65,3 800,0 562,1 70,3

SM2 1 000,0 664,5 66,5 200,0 138,1 69,1 800,0 526,4 65,8

SM3 1 000,0 573,0 57,3 200,0 117,5 58,8 800,0 455,5 56,9

SM4 1 000,0 515,3 51,5 200,0 106,7 53,4 800,0 408,6 51,1

SM5 1 000,0 495,9 49,6 200,0 100,3 50,2 800,0 395,6 49,5

SM6 1 000,0 508,7 50,9 200,0 104,9 52,5 800,0 403,8 50,5

DP1 1 000,0 790,1 79,0 200,0 153,6 76,8 800,0 636,5 79,6

DP2 1 000,0 672,9 67,3 200,0 130,1 65,1 800,0 542,8 67,9

DP3 1 000,0 650,0 65,0 200,0 121,8 60,9 800,0 528,2 66,0

DP4 1 000,0 644,0 64,4 200,0 120,9 60,5 800,0 523,1 65,4

DP5 1 000,0 740,4 74,0 200,0 142,7 71,4 800,0 597,7 74,7

NCB 1 000,0 269,8 27,0 771,2 135,4 17,6 228,8 134,4 58,7

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 911,1 631,9 91,1 63,2 341,5

MN2 1000 911,1 376,7 91,1 37,7 1 321,3

MN3 1000 911,1 165,2 91,1 16,5 2 507,0

MN4 1000 911,1 98,6 91,1 9,9 3 558,2

MN5 1000 911,1 60,9 91,1 6,1 4 812,7

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 409,5 76,9 332,6

LER2 Packets received: 170,1 94,1 76,0

40

Average Results of All Test Runs with OCEAN

Test
scenario

All packets sent to sink Packets sent by selfish nodes Packets sent by non-selfish nodes

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

Packets
sent

Packets
received

Percentage
of received

packets

NSN1 1 000,0 911,2 91,1 0,0 0,0 0,0 1 000,0 911,2 91,1

NSN2 1 000,0 694,7 69,5 200,0 133,6 66,8 800,0 561,1 70,1

NSN3 1 000,0 461,0 46,1 400,0 180,2 45,1 600,0 280,8 46,8

NSN4 1 000,0 280,6 28,1 600,0 152,9 25,5 400,0 127,7 31,9

NSN5 1 000,0 196,9 19,7 800,0 152,8 19,1 200,0 44,1 22,1

NSN6 1 000,0 119,3 11,9 1 000,0 119,3 11,9 0,0 0,0 0,0

NC1 500,0 339,3 67,9 100,0 64,6 64,6 400,0 274,7 68,7

NC2 1 000,0 694,7 69,5 200,0 133,6 66,8 800,0 561,1 70,1

NC3 2 000,0 1 433,5 71,7 400,0 274,1 68,5 1 600,0 1 159,4 72,5

NC4 4 000,0 2 609,3 65,2 800,0 503,1 62,9 3 200,0 2 106,2 65,8

NC5 8 000,0 5 543,4 69,3 1 600,0 1 074,7 67,2 6 400,0 4 468,7 69,8

NC6 16 671,0 11 461,9 68,8 3 333,3 2 219,0 66,6 13 333,4 9 242,9 69,3

SM1 1 000,0 694,7 69,5 200,0 133,6 66,8 800,0 561,1 70,1

SM2 1 000,0 651,2 65,1 200,0 135,0 67,5 800,0 516,2 64,5

SM3 1 000,0 571,7 57,2 200,0 117,3 58,7 800,0 454,4 56,8

SM4 1 000,0 499,5 50,0 200,0 102,9 51,5 800,0 396,6 49,6

SM5 1 000,0 495,9 49,6 200,0 100,3 50,2 800,0 395,6 49,5

SM6 1 000,0 508,7 50,9 200,0 104,9 52,5 800,0 403,8 50,5

DP1 1 000,0 790,1 79,0 200,0 153,6 76,8 800,0 636,5 79,6

DP2 1 000,0 672,5 67,3 200,0 130,2 65,1 800,0 542,3 67,8

DP3 1 000,0 650,8 65,1 200,0 124,1 62,1 800,0 526,7 65,8

DP4 1 000,0 646,7 64,7 200,0 120,4 60,2 800,0 526,3 65,8

DP5 1 000,0 740,4 74,0 200,0 142,7 71,4 800,0 597,7 74,7

NCB 1 000,0 269,0 26,9 771,1 134,3 17,4 228,9 134,7 58,8

Test
scenario

All packets sent to sink

Percentage of received
packets

Percentage of packets
received correctly

Number of packet
changes Packets

sent
Packets
received

Packets
received
correctly

MN1 1000 911,1 631,9 91,1 63,2 341,5

MN2 1000 911,1 376,7 91,1 37,7 1 321,3

MN3 1000 911,1 165,2 91,1 16,5 2 507,0

MN4 1000 911,1 98,6 91,1 9,9 3 558,2

MN5 1000 911,1 60,9 91,1 6,1 4 812,7

 All packets Sent by selfish nodes Sent by non-selfish

LER1 Packets received: 408,7 77,2 331,5

LER2 Packets received: 170,0 93,7 76,3

41

Appendix B – Contents of the Attached CD

Final - test scenario settings, reputation system settings

-- runRepSysSim.py - starting script for simulation runs

RepSysSim - source code of the reputation system simulation (Chapter 3)

Results - simulation results

-- csv - set of original .csv output files

-- Analysis.xlsx - simulation results data and graphs (Chapter 5)

-- Output data.xlsx - results of all simulation runs

-- Results.xlsx - averaged results, tables from Appendix A

SensNet - source code of the SensNet framework (Chapter 4)

omnetpp-3.3-src.tgz - source code of the OMNeT++ 3.3 simulator

install.txt - brief installation instructions for Linux and Windows

thesis.pdf - this thesis

