
Guided Simulation of a Wireless Sensor Network
Petr Sobeslavsky∗

Supervisor: Laurent Mounier∗
∗Verimag, 2 avenue de Vignate, F-38610 Gières, France

Email: petr@sobeslavsky.net

Abstract—Guided simulation is a technique that allows a
developer to guide a simulation of a complex system towards
a certain goal. In this paper we explore the possibility of using
guided simulation as a tool for development of new algorithms in
wireless sensor networks. We propose a new strategy for efficient
exploration of the state space and show that the strategy is
feasible.

Index Terms—Guided simulation, model checking, simulation,
wireless sensor networks

I. INTRODUCTION

After years of research, wireless sensor networks (WSNs)
matured to a state where they are ready for practical applica-
tions. However, some issues still remain unresolved. One of
them is securing such networks. New solutions addressing the
problem are currently under development.

An important characteristic of a wireless sensor network is
the limited computational power of the nodes and limited ca-
pacity of their batteries. A good solution ensures the required
level of security and uses as little resources as possible. So
one of the challenges in designing such a solution is finding
a good tradeoff between security and performance.

When looking for the tradeoff, it might be useful for
a designer to be able to find the least efficient execution
sequences easily and use the knowledge to further improve
their algorithm.

The objective of our work was the following: given a non-
deterministic operational model of a network, find a way to
find the execution sequence which is the least efficient with
respect to a given metric.

We proceeded the following way: First, we reviewed the
possible directions and summarized our findings in Section
II of this paper. Then, we implemented a simulation system
adjusted for our field of research (described in Section III) and
a model of a wireless sensor network (Section IV). In Section
V we present our experimental results. Section VI concludes
the paper.

II. RELATED WORK

There are two traditional ways of evaluating properties of a
model - simulation and model checking. Recently, a new class
of techniques, called guided simulation, has been proposed.
This section reviews all the three approaches.

A. Simulation

When using simulation, the network nodes are implemented
in some standard network simulation environment (e.g. NS-2

[1], OMNeT++ [2]) and a set of runs using different scenarios
is performed. After running sufficient number of simulations
the obtained values are evaluated and a conclusion stated.

The advantage is that in these tools it is possible to simulate
the nodes with a high level of detail, including the MAC layer
with packet collisions. It might also be possible to directly
use source codes from an existing implementation, without
needing to translate them into a simulation language.

The disadvantage is that the simulation results depend on the
specific simulation run and on the specific choice of random
numbers which determine the simulation. Results obtained
after a number of simulation runs would approximate the
average case scenario, but it would not be possible to use
them to prove any statement about the worst-case scenario.

B. Model Checking

In order to use model checking, the network has to be
described in a special language, which is then compiled into
a finite state automaton. A model checking tool generates
all possible execution sequences and chooses the ones with
interesting properties as an output.

The advantage is that model checking gives a proof of the
result. It might be used not only to find the average case, but
also to find the provably worst case scenario.

The disadvantage is that the size of the state space increases
exponentially and it is not feasible to simulate networks of
size of more than several nodes, which is not sufficient for
evaluation of complex security solutions.

C. Guided Simulation

In [4] a spectrum of techniques between simulation and
formal verification has been proposed (Fig. 1). Right next
to the simulation is the simulation extended with coverage
measures which denote how many and what kinds of states
have been explored. Further to the right is a smart simulation,
which generates functional tests based on a coverage metric,
driven by the desire to cover an abstract state machine or
selected corner states. Next class of techniques is a wide

Fig. 1. A spectrum of verification techniques as defined in [4]



simulation which symbolically represents large sets of states
as Binary Decision Diagrams (BDD) or logical expressions.
The last class, just next to the formal verification, is prioritized
model checking. The idea is to explore the state space in parts
using heuristics.

An approach which would be on the right of the spectrum,
called guided search, has been further explored in [11]. The
goal was to optimize model checking for bug finding by using
heuristics to search the part of the state space that is most likely
to contain design flaws. Several heuristics were considered:

• Target Enlargement Error states are enlarged so they can
be found with less searching.

• Hamming Distance A distance to a goal state is used as
a search metric.

• Tracks Approximate preimages of states on a desired ex-
ecution sequence are automatically defined and enlarged
using the Target Enlargement technique.

• Guidedposts A designer is supposed to provide a series
of conditions that he believes to be interesting or even
required preconditions.

In [5] a combination of random and symbolic simulation is
considered. The simulator converts input signals into symbolic
formulas and stores them as Binary Decision Diagrams. A SAT
solver is then used to search for a new coverage state.

A combination of heuristics with random simulation has
been proposed in [10]. The Guido uses and abstraction engine
to work only with an abstraction of the complex model. The
abstract machine is then used to guide the simulation towards
the goal. It is done using a heuristic function, which tries to
minimize the distance to the goal.

After reviewing existing proposals, the authors in [8] argue
that heuristics using greedy strategies tend to get stuck in
local optima. Just expanding the search horizon adds too much
search overhead for limited ability to escape dead-ends. They
propose a guidance strategy, which remembers multiple states
from which to continue search. It keeps a bucket of states
for each onion ring distance from the goal. The exploration
algorithm then tries to find a balance between greed and
relaxation.

III. IFSIM SIMULATION ARCHITECTURE

In order to experiment with various simulation strategies
and compare the results. Following the previous Verimag
experience [7], we used the IF Toolset and developed a
simulation library IfSim. It is a universal library and can be
used to simulate any model described in the IF language.

A. If Toolset

The IF Toolset [3] is an environment for modelling and
validation of heterogeneous real-time systems. It provides the
IF language to describe the model and the IF engine to execute
it.

1) IF Language: The IF language is a rich formalism
for structured automata-based system representations. An IF
specification consists of a set of processes, where process

instances run in parallel and communicate either through
shared variables or message passing.

A process is a time automaton extended with data. Each
process instance owns a set of variables and a FIFO queue
to store incoming messages. A process can move from one
state to another by executing a transition. A transition can
be triggered by a message reception, by a timer reaching a
value or when a condition on variable values holds. Transition
is a sequence of actions which are executed sequentially
and comprise variable assignments, message sending, process
creation etc.

The execution of a transition is instantaneous and time
progresses only between the transitions. Time distances are
measured by variables of type clock, which can be changed
or reset in a transition.

2) IF Engine: The IF engine translates the IF code into a
source code in C++ and compiles it to an executable file. The
IF engine itself is also written in C++ and enables users to
extend its functionality by linking their own libraries.

A user has also access to the low level functions of the
engine and is able to implement new exploration algorithms.

Unfortunately, the current IF implementation does not re-
lease memory used by already explored states, so the number
of states explored is limited by the capacity of the memory.
There is no support for such an operation and due to the
complexity of the internal data structures it was not possible
to implement it properly. We partly solved the problem by
introducing reference counting on the instances of the state
class, but there are still some objects that stay unreleased and
the number of states the engine can explore in one run is still
limited.

B. Simulator Library

The execution of the model in the IF engine is driven by
the IfDriver class. The IfSim simulator library defines its own
structure of classes derived from the IfDriver. (Fig. 2)

There are two essential components:
• Evaluator For a given state, evaluates the value of one

(MetricEvaluator) or several (GuidedEvaluator) metrics
and stores them in the state. It also provides a function
which decides whether a state is a goal state or not. A user
is supposed to provide a class derived from the evaluator
class which will implement the functions specific for his
model.

• Explorator Explorator is the implementation of an ex-
ploration algorithm. Several explorators are provided in
IfSim and described in the following subsection. The user
can simply instantiate an explorator class and run the
simulation.

C. Exploration algorithms

We implemented several exploration algorithms. All of the
algorithms assume that for each state it is possible to assign
a non-negative real value of a metric and that an assignment
function is provided by the user. If the user provides values of



Fig. 2. IfSim class diagram

several weighted metrics for a state, their weighted harmonic
mean is used.

The implemented algorithms are:
1) Random Exploration: In every state the next step is cho-

sen randomly among all the subsequent states. This exploration
corresponds to a standard simulation (with the limitation that
the probability for all the states is equal).

2) Heap Exploration: Tries to find the shortest-sequence
execution by keeping all the unexplored states in a priority
heap ordered by the value of the metric. At each step, the
state from the top of the heap is taken, all its subsequent states
are evaluated and put on the heap. In order to limit the state
explosion, the upper limit on the size of the heap can be set.
When the heap gets too big, the states at the bottom of the
heap are deleted.

3) Onion Heap Exploration: The idea of the algorithm
comes from the onion rings [8]. The simulator creates a
priority heap for each layer of states with the same distance
from the source. Every step, one of the heaps is chosen, the
state on the top is evaluated and all its subsequent states put
on the heap in the next layer.

The heaps are ordered by the value of the metric. The heap
selection starts with the heap which is the closest to the initial
state. A coin is flipped. If the result is positive, the heap is
used, otherwise the next heap is tried, etc. If an empty heap
is selected, the next heap is used.

4) Parallel Exploration: The algorithm chooses a fixed
number of execution sequences, which cover the whole spec-
trum of the metric value and runs them in parallel. At each
step, all the consequent states of the current state are evaluated
and ordered by the value of the metric. The fixed number of
states is chosen from the list to continue simulation. Other
states are deleted.

Fig. 3. The minimax algorithm. In the next step, the (1017. 1218) state
will be selected as it maximizes the minimum value. The last state will not
be fully explored as it contains a value lower that the highest already found
minimum value.

5) Minimax Exploration: The Minimax exploration adapts
the Minimax algorithm for the needs of the guided simulation.
It is based on the following idea: At every step of the
simulation, continue with the step, which seems to be the most
promising. It explores all the subsequent states up to a certain
depth (called look ahead and for each of the states evaluates
the minimum and the maximum value of the metric for the
subsequent states. Then it chooses the state with the maximal
minimum value.

The implementation of the algorithm was optimized using
alpha-beta pruning, which stops evaluating a branch when it
finds a state whose minimum value is lower than the highest
of already found values.

Fig. 4 shows an example of the minimax exploration.



init

die

procRouteRequest

idle procRouteReply

procSensValue

Fig. 4. Sensor node as a finite state automaton

IV. MODEL OF A WIRELESS SENSOR NETWORK

For our experiments, we implemented a non-trivial oper-
ational model of a wireless sensor network with a routing
protocol, application layer and a reputation-based security
solution.

A. Network Model

The model consists of several nodes implemented as IF
processes. Node number 0 represents the base station, the other
nodes are regular sensor nodes. The network topology is set
in the model as a graph where vertices are sensor nodes and
edges represent pairs of nodes within radio range, which can
communicate with each other.

When a node sends a message, it is delivered to all the
nodes in its neighborhood (to all the nodes it is connected
with). The receiving node analyzes the message and decides
how to process it. Message delivery is reliable, messages are
delivered to the FIFO queues of the receivers. The order in
which several receiving nodes process a message, is arbitrary
and is the cause of nondeterminism of the model.

Each node is equipped with a battery with a given initial
capacity. Sending or receiving a broadcast message consumes
an amount of energy set as a constant. Sending or receiving a
unicast message also consumes a constant amount of energy,
higher than in case of broadcast.

Sensor node is an IF process. Most of the time, the process
is in idle state, waiting for input message. When it receives a
message, it processes it and returns to the idle state. There are
three more states which simplify the implementation of more
complex operations. (See Fig. 4 for an abstract model of a
sensor node.)

B. Network Operation

During the initialization one node is set as a sending node.
This node will periodically send a value to the base station.
In order to reach the base station in a multi-hop network, a
routing protocol has to be used.

We implemented a simplified version of the well-known Ad
hoc On-Demand Distance Vector (AODV) algorithm [9]. For
each destination, each node stores the address of the next hop
in the route (i.e. the address of the neighbor it will forward
a message to). At the beginning, nodes have no information
about the network topology.

When a node needs to find a route to the destination, it
broadcasts a route request message. All nodes in its neighbor-
hood receive the message. If a node knows how to reach the
destination (it has an address of the next hop in its routing
table), it sends a route response to the sender. If not, it
stores the sender into its routing table and broadcasts the
route request. This way the request is flooded throughout the
network until it reaches its destination. The destination node
answers with route reply message, which is forwarded via
unicast messages back to the sender.

Nodes must ensure that they do not forward the same route
request several times. Each route request is assigned a unique
identifier and nodes store store the identifiers of the already
forwarded messages. There is a customizable timeout after
which the routing tables are erased and the new run of routing
algorithm is executed. This way, the network can adapt to a
loss of a node which ran out of energy.

This operational model will be in the future extended
by introducing non-standard behavior of a node to simulate
an attack, or by introducing more complex communication
patterns.

C. Reputation System

To protect the integrity of the data transferred in the
network, we implemented a reputation system based on the
Watchdog mechanism [6]. It works in the following way: when
a node is asked to forward a data packet, a neighboring node
stores a copy of the packet in its memory and waits until it
overhears the packet being forwarded. The neighbor checks
whether the content of the forwarded packet is the same as of
the original one. If it is different, it means that the node tried
to change it. The node which noticed the misbehavior send
an alarm message to all its neighbors. The neighbors delete
all the routes going via the misbehaving node and put it on
their blacklists. In the next run of the routing protocol, the
blacklisted node is avoided.

D. End of Operation

When simulating lifetime of a network we set the following
condition to end of operation (i.e. the goal state): the network
stops operation when the first of the battery-equipped nodes
runs out of energy.

E. Simulation Objective

The objective of the simulation is to find the worst case
scenario with respect to the energy consumption. It means to
find such a sequence of states in the space state that causes
the network to stop operating in the shortest time.

In order to simplify the model, we did not include detailed
simulation of time. The lifetime of the network has to be
approximated by some other means - by the value of the timer
that periodically requests the sending node to send data or by
the number of messages sent (the former value being just a
multiple of the latter) or by the number of messages delivered
(giving more information about the behavior of the network
when nodes are stopping working).



Fig. 5. The network topologies used. The rectangular node is the sending
node, the double square node is the base station, the diamond node is the
intruder.

We decided to use an energy-per-message metric. It is
defined as:

epm = energyConsumed
nbMsgDelivered

where energyConsumed is the total amount of energy
consumed by the network to get to the state (a sum of energy
spent by all battery-equipped nodes) and nbMsgDelivered is
the number of messages delivered to the base station.

The epm of the initial state is set as a value MAX, which
is much higher than the epm of the consequent states.

F. Network Topologies

We used two networks for our experiments. In order to
observe the communication in the reputation system, it was
important that most of the nodes have at least three neighbors.
We used a diamond shaped networks with 15 and 24 nodes,
out of which 2, resp. 3 nodes are under the control of the
intruder. (Fig. 5)

The intruder nodes behave in the following way: they
participates actively on the routing protocol, i.e. they the
routes to be established. However, when forwarding a data
packet, they change its content (attack on the integrity). The
neighboring nodes running the reputation systems should be
able to detect this behavior and send alarm to other nodes to
avoid routing via these nodes.

G. Battery Capacity

Setting different values for the capacity of node batteries is
an efficient way to control the length and complexity of the
simulation. We ran our experiments setting the battery capacity
to 2000, 10000 and 50000 energy units.

Fig. 6. Results and histogram of random executions of the network A.

Fig. 7. Results and histogram of random executions of the network B.

V. EXPERIMENTAL RESULTS

A. Random execution

We started the experimental part by running a set of random
executions for each network topology and battery capacity. We
executed each model 1000 times, created a histogram of the
result values of the energy-per-message metric and calcualated
the average, minimum and maximum value and the 9th decile.

For this analysis we omitted the lowest and the highest
5% of the results, which correspond to extreme values, which
appeared as a consequence of the simplification of the im-
plementation of the algorithms, which are not able to handle
some extreme cases properly.

The results for the network A are shown in Fig. 6, for the
network B in Fig. 7.

B. Guided Simulation

We tried all the algorithms with the three battery capacities
on the network A. For the heap and onion heap exploration the
maximum heap size was set to 512, the parallel exploration



Fig. 8. Results of the guided simulation of the network A.

Fig. 9. Results of the minimax exploration for the network B.

run 20 parallel executions and the minimax algorithm used the
look ahead value of 3. The results are shown in Fig. 8.

We observed that for a high battery capacity, all algorithms
except for the minimax algorithm either run out of memory
(onion heap and parallel exploration) or take too long to finish
(heap exploration). These algorithms also did not seem to
provide useful results.

For the experiments with the bigger network B we therefore
decided to proceed only with the minimax algorithm. The
results are shown in Fig. 9.

VI. ANALYSIS

The results confirm the hypothesis stated in [8]. The greedy
algorithm (heap exploration) gets stuck in the local optima
and the sequence it finds is under average. This strategy is not
usable for finding a maximum execution sequence.

The extension with several heaps and a combination of
greedy and random approach (onion heap exploration) seems
to provide slightly better result for a small battery capacity
(i.e. when a state space is quite small). However, the result
is still under average and it does not seems to solve the local
optima problem. We were not able to run the algorithm on a
bigger state space, due to the limitation of the implementation.

The parallel exploration seems to be more successful when
the battery capacity is low, but still the result for a medium
capacity is under average.

On the contrary, the minimax strategy seems to provide a
meaningful results in all the cases. For the low battery capacity
the result is above average. For the medium and high battery
capacity the results obtained is higher than the 9th decile, i.e.
it is in the highest 10% of the results in the histogram.

For the network B, the results of the minimax strategy are
even better - all the results are in the top 10%.

Comparing the time complexity, the minimax algorithm
performs significantly better than all the other algorithms.

VII. CONCLUSION

We explored the feasibility of guided simulation for find-
ing execution sequences with a particular characteristic in a
simulation of a wireless sensor network. We experimented
with those recently proposed strategies, which seemed to be
adaptable for our purposes.

We confirmed that the greedy strategy does not perform very
well as it tends to get stuck in a local optima and requires too
much of time and energy resources. The optimizations with the
onion and parallel exploration did not seem to bring significant
improvements.

We proposed to use a strategy based on the Minimax
algorithm and from our experimental results it seems to be
a right choice for the purpose. The algorithm is able to find a
good execution sequence (one of the best 10% of the possible
sequences) in a reasonable time.

In the future, we think it might be interesting to implement
the guided simulation as an extension of a real-world simula-
tion tool and experiment with its usefulness for the network
simulation and the development of new algorithms.

REFERENCES

[1] The network simulator - ns-2, http://www.isi.edu/nsnam/ns/
[2] OMNeT++, http://omnetpp.org/
[3] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In:

Formal Methods for the Design of Real-Time Systems, pp. 237–267
(2004), http://www.springerlink.com/content/qqtpa45muh6c9kf1

[4] Dill, D.L.: What’s between simulation and formal verification? (extended
abstract). In: Proceedings of the 35th annual Design Automation Con-
ference. pp. 328–329. ACM, San Francisco, California, United States
(1998), http://portal.acm.org/citation.cfm?id=277138

[5] Ho, P.H., Shiple, T., Harer, K., Kukula, J., Damiano, R., Bertacco, V.,
Taylor, J., Long, J.: Smart simulation using collaborative formal and
simulation engines. In: Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design. pp. 120–126. IEEE Press, San
Jose, California (2000), http://portal.acm.org/citation.cfm?id=602931

[6] Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbe-
havior in mobile ad hoc networks. In: Proceedings of the 6th annual
international conference on Mobile computing and networking. pp.
255–265. ACM, Boston, Massachusetts, United States (2000), http:
//portal.acm.org/citation.cfm?id=345955

[7] Mounier, L., Samper, L., Znaidi, W.: Worst-case lifetime computation
of a wireless sensor network by model-checking. In: PE-WASUN ’07:
Proceedings of the 4th ACM workshop on Performance evaluation of
wireless ad hoc, sensor,and ubiquitous networks. pp. 1–8. ACM, New
York, NY, USA (2007)

[8] Paula, F.M.D., Hu, A.J.: An effective guidance strategy for abstraction-
guided simulation. In: Proceedings of the 44th annual Design Au-
tomation Conference. pp. 63–68. ACM, San Diego, California (2007),
http://portal.acm.org/citation.cfm?id=1278498

[9] Royer, E.M., Das, S.R., Belding-Royer, E.M., of Cincinnati, U.,
Perkins, C.E.: Ad hoc On-Demand distance vector (AODV) rout-
ing. http://tools.ietf.org/html/rfc3561 (Jul 2003), http://tools.ietf.org/
html/rfc3561

[10] Shyam, S., Bertacco, V.: Distance-Guided hybrid verification with
GUIDO. In: Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings. vol. 1, pp. 1–6 (2006), 10.1109/DATE.2006.244050

[11] Yang, C.H., Dill, D.L.: Validation with guided search of the state space.
In: Proceedings of the 35th annual Design Automation Conference. pp.
599–604. ACM, San Francisco, California, United States (1998), http:
//portal.acm.org/citation.cfm?id=277201


